Deep Hybrid Similarity Learning for Person Re-identification
نویسندگان
چکیده
Person Re-IDentification (Re-ID) aims to match person images captured from two non-overlapping cameras. In this paper, a deep hybrid similarity learning (DHSL) method for person Re-ID based on a convolution neural network (CNN) is proposed. In our approach, a CNN learning feature pair for the input image pair is simultaneously extracted. Then, both the element-wise absolute difference and multiplication of the CNN learning feature pair are calculated. Finally, a hybrid similarity function is designed to measure the similarity between the feature pair, which is realized by learning a group of weight coefficients to project the element-wise absolute difference and multiplication into a similarity score. Consequently, the proposed DHSL method is able to reasonably assign parameters of feature learning and metric learning in a CNN so that the performance of person ReID is improved. Experiments on three challenging person Re-ID databases, QMUL GRID, VIPeR and CUHK03, illustrate that the proposed DHSL method is superior to multiple state-of-the-art person Re-ID methods.
منابع مشابه
Deep Spatial Feature Reconstruction for Partial Person Re-identification: Alignment-Free Approach
Partial person re-identification (re-id) is a challenging problem, where only several partial observations (images) of people are available for matching. However, few studies have provided flexible solutions to identifying a person in an image containing arbitrary part of the body. In this paper, we propose a fast and accurate matching method to address this problem. The proposed method leverag...
متن کاملConvolutional LSTM Networks for Video-based Person Re-identification
In this paper, we present an end-to-end approach to simultaneously learn spatio-temporal features and corresponding similarity metric for video-based person re-identification. Given the video sequence of a person, features from each frame that are extracted from all levels of a deep convolutional network can preserve a higher spatial resolution from which we can model finer motion patterns. The...
متن کاملCross Dataset Person Re-identification
Until now, most existing researches on person re-identification aim at improving the recognition rate on single dataset setting. The training data and testing data of these methods are form the same source. Although they have obtained high recognition rate in experiments, they usually perform poorly in practical applications. In this paper, we focus on the cross dataset person re-identification...
متن کاملDeep ranking model by large adaptive margin learning for person re-identification
Person re-identification aims to match images of the same person across disjoint camera views, which is a challenging problem in video surveillance. The major challenge of this task lies in how to preserve the similarity of the same person against large variations caused by complex backgrounds, mutual occlusions and different illuminations, while discriminating the different individuals. In thi...
متن کاملStructured deep hashing with convolutional neural networks for fast person re-identification
Given a pedestrian image as a query, the purpose of person re-identification is to identify the correct match from a large collection of gallery images depicting the same person captured by disjoint camera views. The critical challenge is how to construct a robust yet discriminative feature representation to capture the compounded variations in pedestrian appearance. To this end, deep learning ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1702.04858 شماره
صفحات -
تاریخ انتشار 2017